,立方星具有模块化、低成本、短周期的特点,能够实现大卫星无法实现的快速发射、多颗组网、全天覆盖,还可以降低风险与成本。天格计划预计利用10-24颗立方星在500-600公里的近地轨道进行组网,在2018~2023年内逐步完成。这一方案能够实现对短伽马射线暴真正的全天覆盖探测,并可通过时间延迟和流强调制的方式实现有效定位,可保证不错过任何一次与引力波暴发成协的短伽马射线暴,有着重要的科学意义。
2016年,天格计划由清华大学工程物理系和天文系共同发起,目前有南京大学、中科院高能所等20余所高校和研究所共同参与合作。南京大学、BJ师范大学等高校的天格团队也将完成卫星载荷的研发调试。截至目前,天格计划已于2018年10月、2020年11月和12月分别发射了三颗天格卫星。天格02星已积累了5个月的科学数据,其首批科学数据已被国家空间科学数据中心接收,未来将对科学界保持开放共享。
南京大学天格团队自2018年成立以来,在江苏省双创计划、南京大学天文与空间科学学院、南京大学双创办公室等的有力支持下,成立了创新团队,充分发挥团队的天文专业优势,开发了科学数据产品分析的流程管线,设置了富有特色的科创融合课程,展开对小卫星探测器的研发。目前,南大天格团队已经成功完成了首颗南大-川大合作天格立方星——天宁星——载荷的地面试验,预期于2022年3月发射。同时,南京大学天格小卫星团队经过1年半的研发、设计、实验论证,于2021年10月最终确定了自主设计的第二颗立方星——应天星——的载荷设计方案。该方案使用可编程逻辑门芯片替代原有的单片机芯片,充分利用可编程逻辑的并行性、高性能和灵活性等特点。这个方案在本领域内具有前沿创新性和独特性,充分体现了了以学生为主体的小型项目的灵活性和创新性。
天格计划的主要科学观测目标是伽马射线暴。宇宙伽马射线暴是人类已知最剧烈的天体物理过程之一,是天体物理领域的研究前沿。2020年11月清华大学天格计划团队研制发射的天格02星载荷成功开展持续科学观测,已获得首批几十例伽马暴事例的候选体。2021年1月21日,天格02星观测到GRB210121A伽马暴事例,该事例也被我国怀柔一号卫星、慧眼卫星和美国费米卫星所确认。有趣的是,GRB210121A在近万个伽马暴样本中的统计分布中处于很特殊的地位。其持续时间大约为13秒,具有明显的长暴特征。通过使用截断幂率谱模型对观测数据进行拟合,研究团队发现GRB210121A的谱指数偏硬,高于同步辐射限制的低能谱指数上限,此外其峰值能量很硬,在第一个脉冲的时候由硬到软,但是即使在最后的爆发阶段也始终居高不下。高能量伽马射线光子总是比低能量光子更早到达,这一现象被称为谱延迟,在GRB210121A中同样观测到这一现象,并且在相对于E的图像中显现出一个拐点,这一现象有可能用于对洛伦兹破缺效应的限制。
研究团队进一步通过该伽马暴的谱指数初步判断其属于光球模型,利用多色黑体的模型进行拟合得到了很好的效果。理论上伽马暴的峰值能量应小于等于黑体所释放的最大能量,通过这一限制可以求出光球模型的半径范围,利用物理的光球模型对GRB210121A进行拟合,得到其半径为几百千米,正好处在光球模型的半径限制内,同时这一模型也限制了该伽马暴的红移位于0.14到0.46的范围内。通过Ep-Eiso的统计相关关系,研究团队限制了其红移应位于0.3到3.0的范围内。此外再结合GECAM、HXMT、GRID等卫星以及IPN所给出的定位信息,在星表中对GRB210121A的宿主星系进行了证认,仅有SuperOS星表中的J010725.95461928.8星系能够满足上述限制,其红移为0.319。研究团队随后使用LasCumbres天文台全球望远镜网络对该宿主星系进行了后随观测,在观测图像中该宿主星系候选者清晰可见,从而进一步证实了本文的结论。
本研究工作由南京大学天文与空间科学学院硕士研究生王翔煜领衔完成,清华大学天格团队郑煦韬同学、中科院高能物理研究所肖硕同学等分别带领研究团队合作完成了GRID-02、GECAM、HXMT等科学数据的分析处理。南京大学多个院系的多位本科生和研究生参与了相关的科学分析,包括杨俊、刘子科、杨雨涵、邹金航、陈国银、倪阳、张子键、吴雨暄、邓云未、马永昶、蒙延智,王培源、许晟、尹一涵、张廷钧、张钊等。南京大学张彬彬老师、清华大学曾鸣老师、中科院高能物理所的熊少林老师为该文的通讯作者。清华大学、中科院高能物理所、河北师范大学、广西大学等多位专家学者共同参与了这一研究工作。本工作得到国家自然科学基金、科技部重点研发计划、江苏省双创计划、中央高校基本科研业务费专项资金、双一流大学建设经费,南京大学天文与空间科学学院、以及南京大学双创办公室的多项基金和机构的支持。
蒙特·卡罗方法,也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数来解决很多计算问题的方法。与它对应的是确定性算法。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学等领域应用广泛。
蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”,而当一种模式足够精确时,他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷:如果必须输入一个模式中的随机数并不像设想的那样是随机数,而却构成一些微妙的非随机模式,那么整个的模拟都可能是错的。chaptere